Apples on sticks

Yesterday the south-east group of the British Bryological Society visited the town of Wadhurst in the far east of Sussex, near Tunbridge Wells. A variety of habitats including streams, woodland, grassland and ditches led to an array of moss and liverwort species being recorded. All were new for the area as this was a place no bryologist had dared to tread before.

Highlights included my favourite liverwort, the large and fragrant Conocephalum conicum (Great Scented Liverwort), as well as non-bryophytes such as two new plant species for me – Orpine and Soft Shield Fern – and a new carabid in the form of Carabus monilis with its bronze lustre. However, apparently the best find of the day was one of mine. This was the apple-moss, Bartramia pomiformis.


Bartramia pomiformis

This moss immediately struck me, growing on a sandy bank on the edge of a narrow lane. The patch was almost perfectly circular, a richer green than the surrounding winter vegetation. And it was easy to see how it got its name, from the rounded apple-like capsules.

These capsules, that many mosses have in some form or another, form the final stage in the life cycle of a moss. The capsules contain the spores. Like a fruit, the capsules darken with maturity, starting off green such as these but soon becoming dry and brown with age, at which point the spores will be released.

These spores, upon germination, will then grow into a protonema, which will develop into a sheet of felt-like rhizoids, from which the gametophore will arise. The gametophore will be the stage of a moss that many people will be familiar with. It is the typical plant-like form, with stems and leaves, resembling a flowering plant although without vascular structure. This means that mosses lack the transport systems that vascular plants use to transport water, nutrients and minerals to their cells through tubes such as the xylem and the phloem.

Mosses can be dioicous or monoicous. Dioicous mosses have the male and female reproductive organs on different individual gametophores, while monoicous mosses have both sex organs on the same plant. In both cases, the sperm from the male sex organ will be transported to the female sex organ by a drop of water, which is one reason why there is a higher density of moss species in wetter climates such as the Atlantic rainforests of western Scotland and Ireland.

Once fertilisation takes place, a sporophyte begins to emerge from the venter, where the embryo develops. Over a period of many months, a seta (stalk) will grow, on top of which a capsule will be produced. Eventually this will release spores, and the cycle will repeat itself.

When diving into the life cycles of many taxonomic groups, I am often amazed by the complexity behind what appear to be fairly simple organisms at a cursory glance.


The Glue Pistons

For a long time I’ve been wanting to be involved in a recording scheme. Yet I had not quite appreciated the amount of work that is involved in managing what is often a massive collection of records. Over the past few months I’ve been collating the records of springtails (Collembola) from Surrey, which has been a big challenge, even with springtails being one of the least recorded invertebrate groups in the country.

Springtails are often tiny arthropods with six legs. Whether they’re insects or not is up to debate however. Most authorities currently class them as Entognatha, with reference to their internal mouthparts; in contrast to the external mouthparts of insects. However, the other two members of the Entognatha – Protura and Diplura – are just as closely related to springtails as they are to insects.

Another anatomical feature of springtails is the collophore located on the underside of the abdomen, after which they get their scientific name, which means ‘glue piston’. It takes the form of a tube pointing downwards from the ventral side of the first abdominal segment. Originally, it was thought to help to stabilise the animal, although it is now believed to play a part in maintaining the water content of the body.

Springtails get their common name from the furca, a long, forked organ which originates from the end of the abdomen and is often bent under the body. It is used primarily to escape predators, and can fling the springtail at incredible speeds away from danger. However, where and how the animal lands is unpredictable. Some species, such as Ceratophysella bengtssoni, have an inflatable sac on the antennae with which the springtail can adhere to the surface it lands on. Some species have only vestigial furcas or lack one entirely, often in species which live in habitats such as compact soil where the furca would inhibit the movement of the springtail, or those which live near the sea or flowing water, where an unpredictable jump could land them in an even more dangerous situation.

brachy parv (2)

Brachystomella parvula. Springtails can vary greatly in shape, this being one of the stout, pudgy Poduromorphs.

The best literature for identification is the FSC key written by the late Steve Hopkin, A Key to the Collembola (Springtails) of Britain and Ireland. This provides a complete key to all the described species thought to be present in the British Isles and is relatively recent (2007). Otherwise, there are a few good websites that can be found online, such as, which has many good-quality images.

If anyone finds and identifies any springtails, I’m sure the co-ordinator of the Collembola Recording Scheme, Dr Peter Shaw, would be happy to receive any records. His details can be found here. And if anyone records any from Surrey, I’d love to hear from you so I can add the records to my growing database. You can contact me using the form under the ‘Feedback/Contact’ page on my blog. I’d also be happy to receive any unidentified specimens in need of ID.

willowsia platani 4

Willowsia platani (possibly var. nigromaculata). One of the Entomobryomorphs: comparatively long, slender springtails.