Brighton blues

With our changing climate, distributions and abundances of a wide range of invertebrates are ever-changing. In this regard, the headline butterfly event of the year was the record-breaking influx of long-tailed blues, reaching the British coast from their regular haunts of southern Europe. At the moment, in September, the offspring of the first wave of primary migrants are emerging from the broad-leaved everlasting-pea plants on which the females had laid their eggs in late August, allowing keen lepidopterists another chance to see this elusive species. However, I did not need this second chance – I was fortunate enough to lay eyes on some of this year’s earliest arrivals.

Walking up Whitehawk Hill on the late summer day of 29th August felt typical, 20 degrees yet with a fresh breeze blowing up from the Channel. However, what I was about to witness was an indication of our warming planet.

Upon reaching the top of the hill, I immediately saw two small butterflies spiralling frantically upwards against the expanse of Brighton in the background. I knew exactly what they were – territorial male long-tailed blues. These were small, dainty yet tireless butterflies, which had crossed the Channel and much of Western Europe to gambol between the community allotments and the scrubby border of the local nature reserve in the shade of the transmission tower.

DSCN8770 (2)

During brief interludes between the combat, these two males and a further individual occasionally paused on ground vegetation, allowing photo opportunities and examination of the species’ beautiful intricacies. The long-tailed blue is so-called on account of the two ‘tails’ which project backwards from the hindwing. These mimic the antennae of the butterfly, and coupled with the eye-spots on both the upper and lower surfaces, the tactic is to make predators attack this end of the insect, thinking it is the head. This protects the actual head from any damage from hungry insectivores.

The photo below shows one of the more worn-looking blues. There are chunks missing from the left hindwing where the eye-spot usually is, suggesting a predator mistakenly attacked the rear end of the butterfly, fooled by the fake antennae. This left only superficial damage to the butterfly.

DSCN8780 (2)

I did not expect finding these long-tailed blues to be quite so easy, and in the past it certainly wouldn’t have been. The first British record of this species was from Brighton all the way back in 1859 (leading to one of its earlier vernacular names being the Brighton argus), although in the succeeding 80 years it had only been sighted again 36 times. The number of sightings more than doubled between 1940 and 1988, with a large proportion of these being during an influx in 1945. However, it took until 2013 and 2015 before the long-tailed blue numbers really became significant, when relatively major immigrations took place into the southern counties. Already it is looking likely that the 2019 influx will surpass all previous influxes.

But why are these long-tailed blues making an effort to reach our shores? There are many other butterfly species which have similar distributions to the long-tailed blue in southern Europe, although they have made no attempt to colonise the UK. However, the long-tailed blue is not only found around the Mediterranean – one of the world’s most successful butterfly species, its distribution also stretches right down to Australia. For such a small lepidopteran, its flight is powerful and determined, showing no reluctance to cross seas and mountain ranges such as the Channel and the Pyrenees. Furthermore, the long-tailed blue is renowned for its ability to pass through its entire life-cycle incredibly quickly. Despite most primary migrants only appearing in the UK in late August, their offspring already started to emerge as adults in mid-September. This allows the long-tailed blue to gain a foothold on new lands with great speed, which gives this species a huge advantage in the face of increasing temperatures in the long-tailed blue’s ancestral homelands. Although the current year-round climate of the UK is too cold for the species to overwinter, it is quite possible that it won’t be long before it is resident in the UK and there will be more chances to admire this resolute butterfly.

 

The Saxons are invading again

In July 1987, Dolichovespula saxonica, commonly known as the Saxon wasp, was first recorded in the UK at Juniper Hall in Surrey. In the 32 years that has since passed, the species has spread throughout south-eastern England, with scattered records further north to Yorkshire and a handful of sightings from Scotland. Eventually, at the end of July this year, I saw my first ever Saxon wasp, in the same county it was first seen. It is one of two social wasp species which have colonised the UK in modern times, along with Dolichovespula media, the median wasp, which was first found by Steven Falk in 1980 in Sussex.

Contrary to what many people might expect, there are several thousand wasp species in the UK, ranging from tiny parasitic wasps which barely reach 0.2mm in length to the docile hornet. Most of these wasps are solitary, and the social wasps comprise only about 1% of all the world’s wasp species. They’re mainly restricted to the subfamily Vespinae, which has around 11 members in the UK.

My recent sighting of the Saxon wasp came as quite a surprise to me. In the past few weeks I’ve been noticing more broad-leaved helleborines Epipactis helleborine (a species of orchid) than I usually do in my local area. They like to grow beside paths within woodland, perhaps due to the increased amount of light that reaches their leaves in comparison to the centre of the dense woodland. As a result, they are one of the most frequently encountered orchids in my region. However, despite their frequency, before I found my first Saxon wasp I had never observed any pollinators visiting these orchids.

DSCN7245

A spike of the broad-leaved helleborine on my neighbour’s verge

As you can see from the photo, their flowers are not particularly attractive colour-wise. Many other orchid species have evolved to mimic their pollinators, so that they are not drawn to the flowers by the promise of a meal but by the promise of a mate; as a bee, for example, attempts to mate with the flower of a bee orchid, pollination will take place. Moreover, the flowers emit a scent mimicking the pheromones emitted by the female bee, attracting the pollinating bees from far afield. This may sound clever, however reducing your number of pollinators to just one or a handful of species greatly restricts spread. Indeed, in southern England, the pollinator of the bee orchid is quite rare, and most of the time the bee orchid reproduces by self-pollination.

DSCN5360

The early spider-orchid, despite its name, has evolved to mimic the mining bee Andrena nigroaenea. I can’t personally see the similarity, but perhaps the bees can.

However, the broad-leaved helleborine does it slightly differently. Its primary pollinators are social wasps, such as the common wasp Vespa vulgaris (one’s standard picnic-botherer) as well as the Saxon wasp. Like many flowers it produces a nectar to entice the wasps in. However, once the wasps have arrived at the orchid flowers, they begin to become intoxicated by traces of opioids within the nectar. The narcotic-like qualities of the nectar cause the wasp to sleepily visit all of the flowers on the orchid multiple times, to ensure that all the pollinia from the flowers are transferred. I like to think that the opioids are also addictive to the wasps to encourage them to visit other broad-leaved helleborines, but I’m not sure whether this has been studied yet!

DSCN7992 (2)

A drugged Saxon wasp walking between helleborine flowers.

In the photo of the wasp above, it is quite easy to see a number of white objects on the face of the insect. These are the pollinia of the orchid, which stick to the face of the wasp after it has visited each flower trying to reach the nectar within. Each individual flower only has a few pollinia, which is the whole product of an anther. It is a coherent mass of pollen which is attached to the flower by a stipe (or stalk) and has a sticky disk on the other end which attaches to the face of the insect. Ideally, the insect then transfers these masses of pollinia to another plant, where the pollen in the pollinia will be transferred to the stigmata, completing pollination.

DSCN8007 (2)

The wasp reaching into a helleborine flower, looking for nectar. The pollinia can be seen just above the thorax of the wasp, attached to the roof of the flower, ready to attach to the wasp. 

It was fascinating to document this sighting, which was two firsts in one: my first Saxon wasp, and my first observation of pollinia in action. I’ll be keeping an eye on the helleborines this summer to see if any other wasps are enticed to the flowers by the sweet nectar and drugs!

Apples on sticks

Yesterday the south-east group of the British Bryological Society visited the town of Wadhurst in the far east of Sussex, near Tunbridge Wells. A variety of habitats including streams, woodland, grassland and ditches led to an array of moss and liverwort species being recorded. All were new for the area as this was a place no bryologist had dared to tread before.

Highlights included my favourite liverwort, the large and fragrant Conocephalum conicum (Great Scented Liverwort), as well as non-bryophytes such as two new plant species for me – Orpine and Soft Shield Fern – and a new carabid in the form of Carabus monilis with its bronze lustre. However, apparently the best find of the day was one of mine. This was the apple-moss, Bartramia pomiformis.

DSCN4421

Bartramia pomiformis

This moss immediately struck me, growing on a sandy bank on the edge of a narrow lane. The patch was almost perfectly circular, a richer green than the surrounding winter vegetation. And it was easy to see how it got its name, from the rounded apple-like capsules.

These capsules, that many mosses have in some form or another, form the final stage in the life cycle of a moss. The capsules contain the spores. Like a fruit, the capsules darken with maturity, starting off green such as these but soon becoming dry and brown with age, at which point the spores will be released.

These spores, upon germination, will then grow into a protonema, which will develop into a sheet of felt-like rhizoids, from which the gametophore will arise. The gametophore will be the stage of a moss that many people will be familiar with. It is the typical plant-like form, with stems and leaves, resembling a flowering plant although without vascular structure. This means that mosses lack the transport systems that vascular plants use to transport water, nutrients and minerals to their cells through tubes such as the xylem and the phloem.

Mosses can be dioicous or monoicous. Dioicous mosses have the male and female reproductive organs on different individual gametophores, while monoicous mosses have both sex organs on the same plant. In both cases, the sperm from the male sex organ will be transported to the female sex organ by a drop of water, which is one reason why there is a higher density of moss species in wetter climates such as the Atlantic rainforests of western Scotland and Ireland.

Once fertilisation takes place, a sporophyte begins to emerge from the venter, where the embryo develops. Over a period of many months, a seta (stalk) will grow, on top of which a capsule will be produced. Eventually this will release spores, and the cycle will repeat itself.

When diving into the life cycles of many taxonomic groups, I am often amazed by the complexity behind what appear to be fairly simple organisms at a cursory glance.

Goldeneye, in lichen form

Running backwards into the Devils Dyke Pub to get out of the fierce hail certainly wasn’t the intended end to today’s outing. We had been caught out on a grand scale; a band of completely unforecast precipitation left our clothes so sodden that not even a hot chocolate and four-cheese pizza could warm me up. But was it worth it?

Birders may be used to the sight of a goldeneye floating out on a windswept gravel pit or reservoir at this time of year. Although the diving duck breed in trees, the nesting sites are solely in cavities in larger trunks and at latitudes further north than the UK. So, how many British birders can say that they’ve seen a goldeneye in a tree? I doubt many of them – yet as of this morning I can, but not sensu stricto.

The goldeneye lichen, Teloschistes chrysophthalmus, is named after the bright orange apothecia borne on blue-tinged stalks. The apothecia are disks containing the asci, which in turn contain the spores which will be carried on the wind to colonise new sites. Indeed, this is likely to be how the goldeneye lichen arrived in the UK. In the 19th century there were several sporadic records along the South Coast, and this decreased to only two in the 20th century. Yet, since 2007, recolonisation has been in full swing and there have been records from most South Coast counties along with an outlier in Herefordshire. It is still a fairly rare species, but definitely on the increase. It is not completely known what might be driving the recolonisation. Increasing temperatures could be a factor, yet in the early 19th century when well-established populations could be found in the south, it was relatively much colder than modern times.

RSCN3560

The bright orange apothecia really stood out on this drab, dull day

For this sighting I am indebted to @apeasbrain who first found the lichen last weekend and who provided brilliant directions (only the one individual plant has been found so far, like a needle in a haystack). However, it turned out that despite the lichen being the main instigator for my visit to Devils Dyke, it was not the only highlight. Just past the Hawthorn on which the lichen is growing, the path descends into a copse of Ash trees. On one of these trees I managed to spot some movement, out of the corner of my eye. At first glance I took it to be a ladybird larva, but I knew something wasn’t quite right. On arrival home, I realised it was in fact a pre-adult Endomychus coccineus, known vernacularly as the False Ladybird. This was a species I’d been wanting to see for months, so it’s a bit embarrassing that I didn’t recognise it immediately – but coupled with the Teloschistes, the incredibly painful scramble back to the pub once the hail set in was absolutely worth it.

RSCN3619

Teloschistes chrysophthalmus becomes my 100th lichen and Endomychus coccineus my 250th beetle. Together they put me on 69 new species for the year so far, a good pace I think!

Beluga in the Thames!

Contrary to my normal style, this blog post’s title is a little more self-explanatory than usual. This is so that when I’m scrolling through the archives in fifty years time I’ll be able to instantly recognise what this post will be about: something I’d never even considered possible.

If I was looking ahead to today from this point last week, I would probably be wondering how I’d managed to book a flight to Greenland or Svalbard at such short notice, and why it was a mild 17 degrees at such high latitudes. At the very least, I would be curious as to where I’d sourced my drugs from. I cannot believe that this morning I was enjoying a plate of chips in the warm sun at a table outside the Ship & Lobster on Mark Lane in Gravesend, Kent, while behind me a Beluga surfaced, just behind a barge with the words ‘Working for the Tidal Thames’ inscribed on its side.

The whale was first found by Dave Andrews on Tuesday, and I imagine he must have had the shock of his life when he spotted it. I certainly would have, with this record constituting one of the most southerly records of this species in the world. Belugas have a circumpolar distribution, with the nearest populations to the UK being over 2500km away. I was surprised to find out that this is the 19th sighting of Belugas in UK waters, although they have chiefly been seen in the Hebrides, Shetland and Orkney, with outlying locations being off Northumberland and Northern Ireland, both in 2015.

DSCN0546

The stretch of the Thames where we saw the Beluga

Belugas are interesting among whales as they can easily tolerate brackish and even freshwater. They are quite at home in estuaries and during summer often travel hundreds of kilometres up rivers in search of fish. In the remote polar regions they usually inhabit, this is fairly risk-free. The Thames is something else, however. As you can see from the above photo, residing in the Thames is not without its dangers. During the short while we were watching the sub-adult Beluga, about half-a-dozen vessels passed right over where the Beluga was seen just minutes before including a couple of massive ships.

Although, ship strikes are not the only danger this whale may have to face. There is also, of course, a higher concentration of plastic in the river than it will be used to. If it ingests too much it will die a slow and painful death. No doubt the overall relatively balmy climate will have an effect, although I’m not sure exactly how. But if Belugas weren’t affected by warm temperatures, then they wouldn’t be restricted to such icy climes.

It will be interesting to see how this Beluga’s slight wander will pan out. The best case scenario is that it will be seen swimming downstream and into the North Sea, where its instincts will kick in and it will swim back north to where it ought to be. To finish this blog post, here is a video of the couple of times I managed to record ‘Benny the Beluga’ coming up for air (email subscribers may have to click through to the blog to view the video):

Coot-like coot-foot

Scientific names, often consisting of a mix of Greek and Latin, can sometimes be a little peculiar. For example, Phalaropus translates to coot-foot, and fulicarius to coot-like, to produce the scientific name for the Grey Phalarope. It isn’t really coot-like on outward appearance at all, only the feet as suggested in the generic name Phalaropus.

Phalaropes are waders, but are unusual among the group as they have partially webbed feet (like coots). This allows them not only to feed along the muddy margins of wetlands but also to lead a pelagic lifestyle, often congregating in large numbers offshore on their way to spend the winter in tropical oceans. The nearest they breed to the UK is in Iceland and the east coast of Greenland. Phalaropes are also unusual in their breeding behaviour. Their breeding plumage is an attractive rusty-red although uncommonly among birds, the females have the more beautiful attire. This is because they perform the courtship displays as well as defend the territory. In this role-reversal, the males incubate the nest and look after the young as they are developing.

Grey Phalaropes pass through UK waters twice a year on their migration, although mostly keeping out of sight of dedicated sea-watchers on coastal headlands. This all changes, however, when events like those earlier this week occur.

DSCN0270

I was lucky to see this male Grey Phalarope in breeding plumage on the Svalbard Archipelago in Arctic Norway a few years ago.

On Wednesday, Storm Ali struck the UK, powering its way from the west with wind speeds in excess of 100mph. Less than two days later, Storm Bronagh also blew in from the Atlantic. The combination of these two systems had notable effects on sea-going birds, particularly Grey Phalaropes. Over the past few days they’ve been turning up all over the UK, including double-figure counts at locations in the South-West. Of this large number, around 60 were found at inland locations, one of which being Bough Beech Reservoir in Kent. This is only a half hour drive away from me, so I couldn’t resist the opportunity to see my first British phalarope.

RSCN0538

The Grey Phalarope at Bough Beech Reservoir. It has been aged as a first-winter, meaning that it hatched this year somewhere in the Arctic.

Sadly, as with any vagrant bird, it is likely that at least some of these displaced phalaropes will be unable to make it back to where they’re supposed to go. Storm-driven birds often use up a lot of energy on their wayward journeys and cannot find enough food where they end up. Furthermore, birds like these phalaropes have usually never seen humans before in their remote, high-latitude nesting grounds. Therefore, they are frequently confiding and approachable, putting themselves at huge risk. Fingers crossed that this one gets back on track!

 

Species no. 3000!

Admittedly Stratiotes aloides, known vernacularly as Water-soldier, is not the most desired plant to have in an ecosystem. It is possible that it is native in East Anglia and Lincolnshire however in Sussex, where this species became number 3000 on my pan-species list, it is more likely to be introduced.

Yesterday I joined the Sussex Botanical Recording Society on a visit to Court Lodge Farm on the Pevensey Levels, which possesses a rich assemblage of aquatic plants in the many ditches. Some special species recorded included Potamogeton obtusifolius (Blunt-leaved Pondweed) and Petroselinum segetum (Corn Parsley), the latter growing on the banks of the ditches rather than within them as was the case with the pondweed.

DSCN6949

An example of one of the ditches where we were recording. The majority of the water plants you can see in the photo would  be Lemna trisulca (Ivy-leaved Duckweed), Elodea nuttallii (Nuttall’s Waterweed) and the aforementioned Potamogeton obtusifolius (Blunt-leaved Pondweed).

Although despite these Levels specialities being present, for the ditches it is hard to escape the colonisation of several non-native invasive plants. Fortunately we didn’t come across any ditches which were dominated by these unwanted waterweeds however both Azolla filiculoides (Water Fern) and Hydrocotyle ranunculoides (Floating Pennywort) were found along with the robust growth of Water-soldier.

Water-soldier can be quite problematic for native flora. Small populations can, if left undisturbed by boats or large numbers of waterfowl, develop into armies. These can completely annex stretches of canals or ditches, out-competing ‘friendlier’ water plants for resources. The following quote is from the Water-soldier’s species account in the recently published Flora of Sussex: “On Pevensey Levels it has spread considerably, and in 2010 was found to be completely covering a ditch for several hundred metres”.

Despite this, I find its biology quite interesting. In the autumn it will begin to stop photosynthesising, and gradually lose the gas in its leaves that keeps it afloat. It will sink to the bottom of the ditch or canal where the water is unlikely to freeze. In the spring the increased strength of the sun’s rays will penetrate deep enough to allow the sharp, serrated, sword-shaped leaves to photosynthesise again, producing oxygen which gives the rosettes their buoyancy.

I was not originally planning to write a blog post on the Water-soldier until I realised today while inputting yesterday’s finds into my list that it fits into the 3000th slot. I am quite relieved that I have managed to reach this milestone, as the target I set myself in a blog post I wrote when I reached 2000 was to record my 3000th species before my 15th birthday. As of today I’m 14 years, 11 months and 1 day old. So I reached my target, but only just. It is hard for me to imagine stopping pan-species listing, however with upcoming GCSEs and A Levels I imagine I might have to slow down a little. But to keep it ticking, I have decided to set myself another target: 4000 by the end of 2019. Wish me luck!

DSCN6943

Two plants surrounded by Frogbit (Hydrocharis morsus-ranae) resembling miniature water-lilies.

DSCN6947

The snow-white flower of Water-soldier. The flowers are not seen too often, with the main method of reproduction being vegetative: the lowest leaves of the plant have axillary buds which will detach when the leaves decay and can disperse long distances before resprouting. This species is what’s known as dioecious – this means that male and female flowers are found on different plants. For some reason, there are very few if any male plants in England, so all reproduction in this country is vegetative as described above.

DSCN6944

The four or five plants in the photo here represent about half of the largest population of them I saw, luckily it hasn’t reached the levels of dominance seen at other parts of the Levels.

Sussex Rarities – Hairstreaks & Clubtails

This morning, having heard some exciting news on the website of the Sussex branch of Butterfly Conservation, I found myself in Ditchling Common Country Park, scanning bracken after bracken with my binoculars. I was looking for a Black Hairstreak or two. The windy and overcast conditions were not conducive to my hopes of sightings along the lines of the day-count of 98 that was made earlier in the month!

These numbers are quite extraordinary considering the fact that this species was only confirmed to be found in Sussex just over a week ago. Following a few battered individuals found at the same site last year, a survey has been undertaken to determine the presence of this colony. Its appearance here is particularly notable as this site is far from the existing distribution of this species in the UK. It is thought to be confined to a band of clay soil in the Midlands, mainly Cambs, Northants and Oxon.

The closest Black Hairstreaks have previously come to Sussex is Surrey, where they were introduced in the middle of the 20th century. However, the habitat at the introduction site was destroyed and the species disappeared there. The species is not known for their long distance movements or dispersal at all, in fact patches of identical habitat to where they are found elsewhere on the same site often go uninhabited due to the reluctance of the butterfly to travel long distances. Therefore it is thought that this colony is also an introduction similar to the Surrey one, although despite it only being discovered very recently it is likely that the species first appeared in the 1990s – this is because the expanse of the population at Ditchling Common suggests that it has been expanding for quite a while. It’s so slow that the rate of expansion, even of a healthy population, is estimated to be only about a kilometre per decade!

Now, back to this morning. The foodplant of the Black Hairstreak is Blackthorn, and it was in abundance at the country park. This was especially true at a corridor that extends from the fish pond south-west to the Folders Lane East. This was where we focused our searching, which turned out eventually to be the right idea. At 10.30 the sunshine finally made a prolonged appearance and the wind died down slightly. This appeared to trigger the daily emergence of the hairstreaks to warm up on the bracken. The first one we found was perched at quite a gradient on one of the fronds, perfectly angled towards the sun. After a few minutes of sitting very still, it switched sides rather in the fashion of a sunbather aiming for an even tan. As it had not yet gained enough thermal energy it was being quite ‘co-operative’, allowing for great views. This sighting was repeated with up to three other Black Hairstreaks, a very satisfying way to see a new butterfly species for me: not a common occurrence!

DSCN6290 (2)DSCN6279 (2)DSCN6282 (2)DSCN6286 (2)

Although the sexes are hard to differentiate on physical appearance, it is likely that those we found were females. The males will emerge earlier, in order to have established a territory prior to the emergence of the females. They will fiercely defend their territory, which is usually centred around an oak known as the ‘master oak’, and approaching the end of the flight period this activity will render them quite battered and damaged. It is likely that this species is past its peak already this year. The species’ very short flight period is one reason why this colony may have remained undiscovered for such a long period of time. Years where the population is dramatically increased compared to previous and following years are also characteristic of this species. It is likely that this year is one of these ‘boom years’ which is what may have lead to this year being the one in which this colony was finally discovered. So if you haven’t yet had a chance to visit this true Sussex rarity, I would recommend that you do so sooner rather than later. Their short adult stage will be over before the end of June, and in future years there probably won’t be as many as there have been this year.

Black Hairstreaks are not the only entomological rarity I’ve had the good luck to see in Sussex this month. At the beginning of the month I took a walk along a small stretch of the River Rother, near Fittleworth in West Sussex. Having been advised about their presence there by Amy Robjohns and Olly Frampton, I was on the lookout for Common Clubtails, a species that isn’t actually as common in the UK as its name suggests. On the British Dragonfly Society website it is described as “extremely local”, only being found on a few rivers in Wales and southern and central England.

DSCN5863

However, its scarcity on a national basis was certainly not evident along this tranquil, luscious river in the mid-morning sun. Along only a few hundred metres of the river we managed to find at least 10 either hunting along the river or perched on bankside vegetation and overhanging willows. The vast majority were males which were patrolling their recently acquired territories while many females would be seeking protection in the nearby woodlands away from the water. They will soon return to mate and lay a new batch of eggs, which will complete their immature stages in the silty riverbed within 3-5 years.

DSCN5904DSCN5877

Orchid on the Hill

The Early Spider-orchids Ophrys sphegodes at Castle Hill NNR have one of the best views of the South Downs as well as Brighton to their south-west. On the northern edge of Woodingdean, a chalk grassland slope supports this nationally scarce species, which has only a scattered distribution along the South Coast from Dorset to Kent.

DSCN5403DSCN5420

This orchid is named after its appearance, with its flowers apparently resembling the abdomen of orb-weaver spiders. However, its flower shape has evolved so that it resembles bees, which come to try and mate with the flower, known as pseudo-copulation. This is also the case in the perhaps more appropriately named Bee Orchid for example. To complement the shape of the flower, these orchids also release the scent of female bees which further entices the male bees to unknowingly pollinate the plants.

However this technique may show to be detrimental towards the success of the species in the face of climate change. Despite the strength and accuracy of the scents wafted by the flower, they cannot compete with actual female bees. Therefore, the plants most likely to pollinate and reproduce successfully are those which blossom after the male bee has emerged although before the females. Although sadly warmer spring temperatures are pushing the phenology (life cycles) of these two species out of sync.

DSCN5346

It is also interesting to observe the variation in the exquisite patterns shown on different individual flowers, such as these:

DSCN5417DSCN5360

Travelling to find these orchids (a new plant for me) was a perfect break from revision. Despite their rarity, there are several reliable sites such as Durlston Country Park and Dancing Ledge in Dorset, Samphire Hoe in Kent and of course where I visited today, Castle Hill NNR in East Sussex. I would definitely recommend looking for them before they stop flowering in early June!

 

Mid-March Moth Madness

After a snowy delay, last weekend it seemed like spring had finally sprung and temperatures rose into double figures. Looking at the forecast for this weekend and into next week however, it looks like the wintry weather will return once again which is very odd for this time of year. I’m usually a fan of a bit of snow, but only at the appropriate times of year. So I decided to write this blog post to try and keep my spring feeling going for as long as possible, before the snow showers begin to move in from the east again.

Saturday night was the first time I have put my moth trap out this year. In previous years I have been a little more keen, with very little reward and sometimes even null counts at this early stage in spring, so I decided to hold it off until now. And with the Beast from the East only about a week gone, my hopes were not particularly high. Although I was in for a surprise.

Most of the time, I just leave my trap out for the whole night and check it in the morning. However, on the off-chance of something notable (or anything at all!) being in there, I decided to look down from my bedroom window just an hour or so after switching on the light. To my surprise I saw what seemed to be an Oak Beauty already within the trap, so I rushed down to check if there was much else about.

To my immense surprise, there were at least 20 moths flying around the trap and on the nearby house wall. Most were March Moths as well as several more Oak Beauties, along with a couple of Tortricodes alternella and a Common Quaker. Already we had recorded around twice as many moths as I usually get in an early-spring night!

I was more than keen to check the trap the following morning. Unsurprisingly, there were moths everywhere, with the final tally being 55! I would be happy with that in May or September, let alone the first half of March! I will run through a few of the stand out highlights:

Small Brindled Beauty

This was the rarest moth that I caught last night, and the second time I’ve caught this species, the previous occasion being early March last year. It is most common in southern England, becoming rarer further north although classified as ‘local’ – found in less than 300 sites nationally. The females of this species are one of many winter and spring species that are apterous – lacking wings. The females of many of these apterous species seem completely unlike most moths to me, although I’m yet to find one myself.

RSCN2801

Small Brindled Beauty

Dotted Border

This species is unique among the early spring moths as it is one of the few Geometrid moths out at this time of year. In my experience it is usually the Noctuids (such as the Clouded Drabs, Hebrew Characters and the Quaker species) that are the most commonly trapped, although the most abundant species caught during this night were the 18 Oak Beauties which is a slightly unusual Geometrid species. The Geometrids can be distinguished by the way they hold their wings; most Geometrids hold their wings out to the side whereas most Noctuids fold their wings over their abdomen.

DSCN2827

Dotted Border

This species can usually be identified by the row of dots running along the bottom of the wing which you can see in the photo above. However, it is a variable species throughout its distribution and there are forms which are very dark making the row of dots (the dotted border) very hard to see.

Clouded Drab

This species is quite common especially where its foodplant Oak is plentiful although, despite its name, it is can be really nicely patterned. It is another species that is really variable, with many colour forms. We caught three, one of them in particularly was particularly good-looking, with its pattern enhanced by the flash on my camera.

DSCN2769

Clouded Drab

Hopefully the upcoming cold snap will be the last of the winter, and spring will be allowed to continue unabated. I look forward to moth trapping further once it warms up again, hopefully we’ll continue with some good numbers!

Final Tally

  • Common Quaker 3
  • March Moth 9
  • Oak Beauty 18
  • Hebrew Character 4
  • Tortricodes alternella 2
  • Small Brindled Beauty 1
  • Dotted Border 5
  • Clouded Drab 3
  • Small Quaker 8
  • Chestnut 1
  • Brindled Pug 1